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ABSTRACT

Photometric measurements are prone to systematic erresemting a challenge to low-
amplitude variability detection. In search for a genenalgmse variability detection technique
able to recover a broad range of variability types includingently unknown ones, we test
18 statistical characteristics quantifying scatter/andorrelation between brightness mea-
surements. We compare their performance in identifyingaide objects in seven time series
data sets obtained with telescopes ranging in size fronepheto lens to 1 m-class and prob-
ing variability on time-scales from minutes to decades. Td#t data sets together include
lightcurves of 127539 objects, among them 1251 variabls sifavarious types and represent
a range of observing conditions often found in ground-basedbility surveys. The real data
are complemented by simulations. We propose a combinatiwoandices that together re-
cover a broad range of variability types from photometri@ddaracterized by a wide variety
of sampling patterns, photometric accuracies and pergestaf outlier measurements. The
first index is the interquartile range (IQR) of magnitude meaments, sensitive to variabil-
ity irrespective of a time-scale and resistant to outliirsan be complemented by the ratio
of the lightcurve variance to the mean square successiierelce, 1n, which is dficient

in detecting variability on time-scales longer than thedgptime interval between observa-
tions. Variable objects have largefrilandor IQR values than non-variable objects of similar
brightness. Another approach to variability detectioroisdmbine many variability indices
using principal component analysis. We present 124 prelyainknown variable stars found
in the test data.

Key words: methods: data analysis, methods:statistical, starsavas: general

1 INTRODUCTION scales of these changes vary from tens of magnitudes andsweek
for supernova explosions to a fraction of a magnitude anditem

for stellar pulsations. With the notable exceptions ofﬂigbhoes
(e g!/Bond et dl. 2003), variable reflectlng nebulae

[1997) and the M87 jet (e.0. Perlman etlal. 2011) varlablealﬂaje

A variety of phenomena manifest themselves as changes ar-app
ent brightness of astronomical objects. The amplitudestiame-
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are unresolved by single-dish telesc&Jesiriable point-like ob-
jects are often embedded in light of a resolved non-varisbilgce
(active nucleus or a supernova in a galaxy; young stellaablgim-
bedded in a nebula) that complicate measurements of thebiari
object’s brightness. The variations may be associated avin-
gle catastrophic event (supernova), may be approximatsiarf
novae) or strictly periodic (eclipsing binaries) or apdito(active
galactic nuclei) in nature. Our understanding of these tavee-
pends on the fécient and reliable detection of brightness varia-
tions.

Photometric measurements are prone to systematic eradrs th
are dificult to characterize. This makes it challenging to distisgu
true low-amplitude variability from the apparent one calisg sys-

tions (diurnal or seasonal cycle, synodic month, periodiicligg
errors, orbital period of a spaceborne telescope, etc.).

If a search is aimed at a specific variability type for which
a lightcurve shape is generally known in advance (e.g. exabl
transits or eclipsing binaries in general, Cepheids, RRaé&yr
stars, novae), template fitting (e.q. Jenkins, Doyle & Gsille
11996, | Macrietal.| 1999, Prsaefal. 2011, Sesarletal. /2013,
\Angeloni et al! 2014, Himann et al. 2016) with various trial pe-
riodgflare development time-scales can be performed. Simple
cuts on lightcurve parametets (Henze, Meusinger & Pigto€s 2
|Graczyk & Ever 2010) as well as advanced machine learnirg tec
nigues 05) can be used to select lightcofvas
known shape from a large photometric data set. A pre-sefecti

tematic éfects and measurement errors. Imaging artefacts such asbased on colour can be used to reduce the number of candidates

cosmetic defects of a CCD, fitiaction spikes from bright objects
and cosmic ray hits as well as blending between images obpear
objects can corrupt photometry and mimic high-amplitudiasl-

ity. Three diferent lines of attack on the problem of variable object
detection are described in the literature: direct imagep=oison,
(“transient detection”), lightcurve analysis using vaildy indices
and periodicity search.

when searching for variables of a specific tyet
2006 | Tisserand et al. 2013. Zinn el al. 2014, Ordofiez &j&dirz
12016, Moretti et al. 2016).

Since period search and template-fitting algorithms are
computationally expensive, a two-step approach can be ap-
plied. Candidate variable stars are pre-selected usingsg fa
to-compute variability index (aridr colour) and only the

Transient detection techniques seek to identify changes lightcurves that passed this selection are subjected tu)cper

between two sets of sky images taken affedent times

search (e.

d. Akerlof et al. 20
(epochs). The changes may be found by subtracting the 2014, LEemzLLa_LQp_es_eJJéL_Zﬁb]li._Eﬂaandgzlungaddﬂmlﬂi

images pixel-by-pixel after resampling them to a com-

\Gran et al.| 2015, Vivas etial. 2016) or template fitting (e.g.

mon coordinate grid and accounting for seeing changes [Shappee & Stan=k 2011, Hmann & Macti [2015). If the to-

(difference image analysis — DIA;_Tomaney & Crofts 1996,
AAlard & Lupton [1998, Alard_2000, Bramich 2008, Becker €t al.
12012,/ Zackay & Ofek 2015, Bramich etlal. 2016; applicatiohs o
the method include_Bonanos et al. 2003, Zheleznyak & Kravtso
12003, |Arellano Ferro etal. | 2013,  Sahay, Lebzelter & Wood
2014, [Zhang etal.._2015).

ki 2015), PTE (Law et al. 00

tal number of observed objects is low, both period search and
lightcurve scatter-based selection criteria are apptiddpendently

of each other to conduct exhaustive search for both periodic
and non-periodic variables (Sitek & Pojmaiski 2014, Riestall
m). Selection based on period search may be followed &y ev

Large surveys such as OGLE more computationally intensive steps like binary systendetiing

(Devol[2005)[ Kim et d1.[(2014) used the period along witheoth

Pan-STARRS [(Rest etlal. 2014) and DHS (Kesslerlet al.|2015) variability features as an input for the random forest atpar to

implement the image subtraction technique. Alternativahg may
extract astronomical objects (sources) from each |magep|emi-
dently and compare the resulting source i

select periodic variable star candidates in the EROS-Ddatand
simultaneously classify them.
The methods described above mafjiogently select vari-

2014, CRTS - Drake etkl. 2009). The second-epoch images areable object candidates from a large set of photometric data.

often taken in pairs, triplets or even longer series witheliing to
eliminate image artefacts that are usually associated aviglven
position on the image detector, not in the sky.

More sophisticated detection strategies may be applieéd#m

surements are obtained at more than two epochs. Their abviou

advantage over the simple two-epoch data comparison isdhe p
tential to average-out individual measurement errors aod tle-
tect variability with a lower amplitude. One class of meth@in-
ploys various “variability indices” characterizing theevall scat-
ter of measurements in a lightcurve gorddegree of correlation

between consecutive flux measurements (some recent example

IMunari et all 2014, Javadi etlal. 2015. Yao €t al. 2015b, seei¢h
tailed discussion in Sectidd 2). The other class of methedsch
for significant periodicity in flux variations (e. m
2014, | Drake et all_2014. Kaluzny et al. 2014. Chakrabartilet a
2015, Nardiello et al. 2015, 2015, Soszyhski et al. 2015hilev
many types of variable stars show periodic or semi-peritigtt
variations, flux measurement errors are expected to becaleror
associated with a known periodic process inherent to theroas

1 The light travel time argument implies that an object vagyom a time-
scalet cannot be larger thact light seconds, otherwise its variability would
be smeared.

However, the final decision to designate an object as “vhriab
star” rather than a “candidate” is usually made only after vi
sual |nspect|on of the objects lightcurve by a human expert

Eusang_el_dlLZth._KLag;umk_eﬂdl_zﬁlb._Smg_éﬂ_al_Pom)
the number of observations is small, the original images are
checked for the presence of obvious problems [image attgfac
cosmic ray hits, point spread function (PSF) wings of a lirigh
nearby object] fiecting photometry of a candldate variable (e.g.
IDolphin et all 2003, Bernard etlal. 20

[2011)/ Ramsay et Al. 2014). While advanced image artifaettien
procedures exist (Fruchter & Hook 2002, Desai ét al. 20ligjal
image inspection remains an important data quality comtall as

it may uncover unexpected problerms (Melchior et al. 2016).

Variable star detection may be considered in the framewbrk o
classical hypothesis testing (€.g. Wall & Jenkins 2003gst@blish
that an object is variable, one needs to rule out the null thgo
sis that it is constant given the observatidns (Eyer 2006 @ay
compare a value of variability-detection statistic (Sexf) derived
from the lightcurve to the distribution of this value expegttfor
non-variable objects. The problem is that objects with wated
measurements produce long tails in the aforementionedhlist
tions. In the presence of badly measured objects one isddmce
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set a low threshold for accepting candidate variables (@#&{8)
and rely on additional information not captured by the \aitity-
detection statistic to distinguish true variables fromlpadeasured
objects in the distribution tail.

Alternatively one may view the search for variable stars as a
classification problem that may be approached with macleizent
ing techniques. The task is to classify a set of objects chera
ized by their lightcurves, images associated with eachtdigive
point and possibly additional pieces of information assted
with each brightness measurement (object’s position orC@&p
frame, airmass, seeing, temperature, etc.). One needsstio-di
guish various classes of variable stars from the class of- wel
measured constant stars and classes of stéasted by various
types of measurement errors (bad pixelgrdction spikes, blend-
ing). Objects that do not belong to one of the known classesldh
also be identified. While considerable progress has beer mad
lightcurve-based automated classification of stars ajréadwn
to be variable|(Debosscher etlal. 2007, Paegert, StassungeBu
[2014[Kim & Bailer-Jonés 2016), an automated system thaticou
reliably identify variable stars among non-variables rgm&o be
developed.

In practice, the following approach to variable star detect
is often adopted. (i) Objectdfacted by blending and image arte-
facts are flagged at source extraction stage. (ii) The lights of
the detected objects are constructed and may be refined theing
available additional information (Sectibn B.7). (iii) Thechniques
described in the previous paragraphs are used to selecigingm
variable star candidates based on their lightcurves. fie)list of
candidates is examined by a human expert who performs the fina
classification and removes false variables from the lighiwork
we explore the limits of the traditional approach outlinedee and
identify the best ways to select candidate variables.

We compare the performance of popular variability detectio
techniques on various real and simulated photometric @dasa\d/e
refer to any value that quantifies ‘how variable’ a given cbjs
as a ‘variability index’. The discussion is limited to vability in-
dices based on lightcurve scatter (Sectfons[2.1-2.7) amelation
(Sectiong Zd=2.17) while the period-search based techsiwill
be discussed elsewhere. We attempt to find a general-puvpdse
ability detection technique able to recover a broad rangearddbil-
|ty types including currently unknown ones (Shin, Sekora yuB
[2009). Such a technique would also be useful for solving tppe
site problem: reliable selection of non-variable objebts tan be
used as photometric standards (@@ 2012) cettafor
searches of variations not intrinsic or not typical to thgeots such
as microlensing event@gsm), occultatiohstars
by distant Solar system bodiés (Zhang ét al. 2013), tidaligtaon
events in nuclei of non-active galaxies (van Velzen &t al13Gnd
failed supernovae (Kochanek eflal. 2008).

Publications focused on comparing performance of varabil
ity search techniques include Enoch et bl (2012) who coetpar
planetary-transit detection algorithms, wHile de Di and

[(2010) discussed a number afiv
ability detection tests in the context of active galacticcleu
Ferreira L ross_(2016) compared performance of some
multi-band correlatlon based variability indic
(2003) and_Allevato et al| (2013) discussed properties wtdes
variance’ (Sectiofi_2]6) and ‘fractional variability antplie’, the
variability measures often used in X-ray astrono
@) compared the accuracy and performance of perloohgnd|

algorithms._Findeisen, Cody & Hillenbrand (2015) compaagi-v

ous methods of extracting a characteristic time-scale fonnreg-

© 2016 RAS, MNRASD00,[1-60
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ular IightcurvelMl@llS) provide an extensive ditea-

tures useful for lightcurve characterization and classiion. Pre-

liminary results of our variability index comparison bassalely

E\ngotographic lightcurves are presented| by _Sokolovsky et
).

This paper is structured as follows. Secfidn 2 defines the var
ability indices we investigate. Sectigh 3 describes thé desa.
Section[# presents the technique for comparisonfigicéveness
of variability indices in selecting variable objects. Sees{d dis-
cusses the results of the comparison and Selction 6 sumsarize
findings.

2 VARIABILITY SEARCH METHODS

In this section we define the numerical parameters chaizicigr
the ‘degree of variability’ of an object — the variabilitydices, dis-
cussed in detail in the following paragraphs. The scatésed in-
dices (Sectiorls 21.P=2.7) consider only the distributiomefsured
magnitudes ignoring the time information available in dtaurve.
Some also take into account the estimated errors. The atiore
based indices (Sectiohs X.8=2.17) in addition to the medsuag-
nitudes themselves consider the order in which the measuntsm
were taken and some indices also take into account the tiffeg-di
ence between measurements. The use of this additionafriafmm
makes correlation-based indices more sensitive to lowtitudp
variability, but on the downside, correlation-based iegiare in-
sensitive to variability on time-scales shorter than thengang
time (Kim_ et ail 2011lb). Tablgl 1 summarizes the informatisadi
by each index. In the following sections we compare tfiective-
ness of these variability indices in selecting variablessta

2.1 y?test

Ay test is any statistical hypothesis test in which the sampling
distribution of the test statistic is g distribution when the null
hypothesis is true. GiveN magnitude measurements (assumed

to be independent of each other) and their associated err¢as-
sumed to be Gaussian), the null hypothelig, that an object does
not change its brightness can be tested by computing the valu

N (m -m 2
2 _
= Z = @)
where
N N
_ m 1
m= ‘T_iz/ Z ‘T_uz (2

is the weighted mean magnitudg? is compared to the critical
value x5, obtained from the/-distribution withy = N — 1 de-
grees of freedom. Thp-value indicates the statistical significance
level at whichH, can be rejected.

If measurement errors are estimated correctly, the mugjorit
of objects should havg? values consistent witlto, since the
majority of stars are not variable. A notable exception frims
rule is millimagnitude-precision photometric observatiosuch
as the ones obtained by MOSMH@OOS), CoRoT
(Auvergne et dil_2009), Keplet (Boruckief al. 2010) and fetu
photometric space missions (elg. Ricker et al. 2014, Raw@r e

m), which are able to detect variability in the majorifyfield

2 https://en.wikipedia.org/wiki/Chi-squared_test
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Table 1. Information included in variability indices. For referes see
the footnote in TablEl5.

Index Errors Order Time  Sec. Ref.
Scatter-based indices
szed 4 21 (@)
o 22 (b)
ow v 22 (b)
MAD (c)
IQR 23 (d)
RoMS v 23 (e)
O-I%IXS v 28 ()
v IZ] (9
Correlation-based indice
I1 v IH (h)
I S v Y zZ3 ()
J v o v v ZI3 ()
J(time) v v oo v 21O ®
J(clip) /v v 212 W
L v v v I3 ()
CSSD v 213 o
Ex v v v 213 (m)
1/n v 213 (n)
Ea v v 218 (o)
Ss v v 2172 (p)

stars, including variability caused by transiting Solasteyn-like
planets|(Hippke & Angerhausen 2015).

In practice, poor knowledge af; limits the applicability of
the y? test for variability detection in ground-based photometry
In this case,y? may still be useful as a measure of scatter in a
lightcurve compared to the expected measurement errarshéu
cut-of value for discriminating variable objects from non-vatéb
ones should be fierent from the one suggested by tpredistri-
bution. In the following we use the reducgfl, = x*/N - 1 (e.g.

Andrae, Schulze-Hartung & Melchior 2010) to compare itsueal
for lightcurves with diferent N. |Villforth, Koekemoer & Grogin

(2010) note that estimated photometric measurement earars
asymmetric and non-Gaussian when converted from flux to magn
tude space. This violates the assumptions behind theatnitgdue
X% calculations. The? test, in its textbook form, should be per-
formed in flux space and only when the contribution from all
sources of photometric errors has been properly accouated f

2.2 Standard deviation,o,

A detectable variable star, by definition, should have lasgatter
of measurements in its lightcurve compared to non-variatdes
that could be measured with the same accuracy. One way taczhar
terize scatter of measurements is to compute the standaatida,

®)

=
=\ N7 uMm-m?
7 N—1;

or alternatively, if the estimated errors are assumed teaethe
relative accuracy of measurements, its weighted version

> Wi ZN:
Wi (m, — m)?
_ ii(wiz) =1

Ow =

N 4
G

Assuming thatm are drawn from Gaussian distributions having
variancesxri2 and the same mean the choice of weights; = 1/0'i2
maximizes the likelihood of obtaining the set of measuremen
(m). Therefore, given a set of measurements ), Equation[(R2)

is the best estimate of the mean under the above assumptions.

We defineo as a square root from an unbiased estimator of
the population variance [the Bessel correction, iNe—(1) instead
of N in the denominator of equatih 3] as this is the definitioemoft
adopted in statistical software, notably in the GNU Sciantii-
brarfd. For the purpose of variable star search, the use of Bessel's
correction has minimal practical consequences.

Standard deviation is relatively sensitive to outlier peirin
many cases, lightcurve filtering (Sectian]3.7) might be eeedae-
fore o can serve as arfiicient variable star selection tool. In the
following paragraphs we describe ways of characterizigigttiurve
scatter that are less sensitive to outliers.

2.3 Median absolute deviation (MAD)

The median absolute deviatthMAD (Rousseeuw & Crotix 1993,
Richards et al. 2011), is a measure of scatter of obsergtipde-

fined as

MAD = median[m — median(n))). (5)
For a Gaussian distribution
o = MAD /®71(3/4) ~ 1.4826x MAD (6)

where®1(x) is the inverse of the cumulative distribution function
for the Gaussian distribution. The MAD statistic is mostigensi-
tive to outliers((Zhang et £1. 2016); its only disadvantagthat it is
equally insensitive to real variations that occur only cicaally,
like rare eclipses of an Algol-type binary that may showuaity
constant brightness outside of the eclipses,

The use of MAD is computationally more expensive than
as the sorting needed to compute the median is a relativaly; sl
O(nlogn), operation compared to calculating the average value,
O(n). HereO(nlogn) (O(n)) means that there is a const&ht- 0
such that for any number of input measuremengshe computa-
tion will be completed in less tha@nlogn (Cn) steps. It should
be noted that correlation-based indices discussed beloBeti
tions[ZBEZ2. 17 computationally depend on the order of datat®
and, therefore, require the input lightcurve to be sortethie — an
operation of0(nlogn) complexity.

2.4 Interquartile range (IQR)

Another robust measure of scatter is the interquartile&ﬂ@R

(Kim et all[2014), which includes the inner 50% of measuremen
values (i.e. excludes 25% of the brightest and 25% of thedain
flux measurements). To compute the IQR we first compute the me-
dian value that divides the set of flux measurements into rugpe:
lower halves. The IQR is the filerence between the median values
computed for the upper and lower halves of the data set. For th
normal distribution IQR= 2d~1(0.75)r ~ 1.34%r, whered1(x) is

the inverse of the cumulative distribution function for tRaussian

3 https://www.gnu.org/software/gsl/
https://en.wikipedia.org/wiki/Bessel’s_correction

4 http://en.wikipedia.org/wiki/Median_absolute_deviation
5 https://en.wikipedia.org/wiki/Interquartile_range
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distribution. The IQR may be more appropriate than MAD (Sec-
tion[2:3) for measuring the width of an asymmetric (skeweskyid
bution, such as the distribution of flux measurements of dpstag
binary.

2.5 Robust median statistic (ROMS)

The median statistic, RoMS, was proposed by
Enoch, Brown er | (2003) and successfully ap-

Bur:
plied for variable star search by Rose & Hintz (2007) and
Burdanov, Krushinsky & Popbv (20114). It is defined as

lZN: Im — mediant)|
— Tj

robust

RoOMS= (N — 1) 7
For a non-variable object, the expected value of ROMS isratou
1 as the majority of the measurements should be withiroflthe
median value (it- is estimated correctly).

2.6 Normalized excess variancer?,

Normalized excess varianceo? used in X-ray

(Nikotajuk, Czerny & Gurynowidz Tﬁﬁﬁw [Ponti etlal. 2012,
Hernandez-Garcia etlal. 2015, Yao etal. _2015a) and dptica
5) astronomy to characterize variabilitylimde

in the presence of changing measurement errors. It is dedi:ied

1o
Tixs = WZ[("\ -m) -
i=1

Here we use the symbof,, ; for the normalized excess variance as
this or similar symbols are widely used in the literatureté\ithat
o2ys May be negative if the estimated errorsare larger than the
actual scatter of measurements, The fractional root mean square
variability amplitude F,,, another commonly used X-ray variabil-
ity measure, is simply a square root of the normalized excass

atl. ®)

ance:F.ar = vonxs (Vaughan et al. 2003) if2, . is positive.
Lawren P |L~( 993) note thatlnthe presence of red

noise, the expected value of,, s depends on the length of a time
series. The value af?, ¢ estimated from a lightcurve is related to
the integral of the power spectral density (PSD) in the fesmy
range probed by the observations, however this relatioarigex
3) and depends on the PSD slope and sagnpli
(window function).

2.7 Peak-to-peak variability,v
The peak-to-peak variatiow, can be characterized as

(M = 0)max — (M + T1)min ©)
(M = T)max + (M + T1)min
where M — 0)max and M + o)min are the maximum and min-
imum values of the expressiomg — o and my + o; over the
entire lightcurve. This variability index, with minor vations
in its definition, is widely used in the radio astronomy com-
munity (e.g.l Aller, Aller & Hughds‘._Q_szt Ciaramella et al.(2Q
Hovatta et al. 2008, Fan et/al. 2011, Majorova & ZhelenkovE20
Gorshkov, Konnikova & Mingaliev 2012). It is of interest toro-
parev with variability characteristics traditionally used intop
cal and other bands. Here we use the definitiov aflopted by
Sokolovsky et dl.[(2009) and Mingaliev ef al. (2014). Thareabf
v may be negative if the measurement errofsare overestimated
(c.f. o2y, Sectio ZB)

V=

© 2016 RAS, MNRASD00,[1-60
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The peak-to-peak variation may be a sensitive variabitity i
dicator if we believe that a lightcurve is free from outlig¢tisanks
to high data quality or successful filtering). Whitecan be com-
puted for a lightcurve consisting of as few as two observatithe
expected value of for a non-variable source depends strongly on
the number of measurements. Monte Carlo simulation is dipehc
way to estimate expected values/dbr a non-variable object given
a number of observations and their accuracy.

2.8 Lag-1 autocorrelation,l;

Photometric observations are often planned so that the spaa
between consecutive flux measurements is smaller than tire va
ability time-scale expected for the objects of interest Simplest
way to characterize the similarity of consecutive flux meesents

is to compute the first-order autocorrelation @méent (also known
as ‘serial correlation cdicient’ or ‘lag-1 autocorrelation’) of a

lightcurve (e.g [.201la,b):
Ng(m - m)(m,1 —m)

I, (10)

N
igl(m - m)?

It has been shown that, assuming thmare independent measure-
ments subject to identically distributed measurementrgrtpfol-
lows an asymptotically normal distribution with the expmttalue

of = —1/N and the variance ¢ 1/N, allowing one to assess if the
obtained value of; is consistent with the expected one under the
above assumptions.

This simple method losesfiency if a lightcurve is unevenly
sampled since pairs of data points widely separated in tinte a
weakly correlated or uncorrelated entirely contributehte value
of I; equally with the pairs of measurements taken close in time
that may be well correlated.

2.9 Welch-Stetson variability indexl
Welch & Stetsan(1993) propose a variability indéxcharacteriz-

ing the degree of correlation betweenuasi-simultaneous pairs of
measurements obtained in two filtdrandv:

N 2

whereb; (v) are the measured magnitudes, (o) are the esti-
mated errors ant (V) is the mean magnitude in filtér(v).

Relying on the above assumption that a lightcurve contains
pairs of measurements obtained close in time (comparedeto th
expected variability time-scale) one can applyo a single-band
lightcurve by dividing it into two subsamples that would niém
measurements in two filters. One obvious way to accompligh th
is to sort the lightcurve in time, number measurement2,@. ..)
and assign measurements having odd numbevstisample and
even numbers tb subsample. In this cask,= v may be taken to
be the mean of alN = 2n observations, rather than the means of
two different samples each of sine

If a single-filter lightcurve does not entirely consist ofrgaf
closely-spaced points, one would like to avoid forming pdiom
measurements taken far apart in time (&fin Section[Z.B). In
that case, an additional parametam oy, defines the maximum
time difference between two observations that are considered to

Vi —

(11)

oy
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be taken sfiiciently close in time for forming a pair. The perfor-
mance of the algorithm on a given unevenly sampled data set de
pends strongly on the choice A ax. If AThax is too small, only
few lightcurve points will form a pair and contribute tarender-

ing the index unusable. An optimal value &T . would be large
enough to form many measurement pairs in an unevenly sampled
lightcurve but small enough to remain sensitive to a wideeaof
variability time-scales akis sensitive to variations on time-scales
from ATmax to the overall duration of the lightcurve. A histogram of
the interval between observations may be useful in sekpetinap-
proprlateATmX value for a given data s ross
[2016). In our tests we us&Tmax = 2d for all the test data sets.
Isolated data points that cannot be paired with others (fgiven
choice ofATmay) are omitted from thé computation.

Fig.[I and TablE]2 show how an unevenly-sampled single- band
lightcurve can be divided into subsamples to calculate J. A
point is assigned to subsample b, v or counted as ‘isolatgukad-
ing on the value oAT . and the order in which one considers the
lightcurve: from the first point to the last one (directiomlicated
by the top arrow in Figl]1, the corresponding samples are dame
as lower case b and v) or the reverse direction (bottom acaps
ital B and V). Depending on the order, one may compute the ‘for
ward’ and ‘reverse’ values of an index that mighffeli from each
other because the points are divided into pairs (assignédaiad
v subsamples) in a fierent way (as illustrated by Figl 1). In our
implementation of the index, the ‘forward’ and ‘reverselugs are
averaged to have a single value describing a lightcurvéndrcase
of | (but notJ), the ‘forward’ and ‘reverse’ values are equal if one
allows a point to be counted in multiple pairs (enter two sulysles
simultaneously).

Thel andJ indices are designed to detect variability on time-
scales much longer than the typical timéfelience between ob-
servations forming pairs. If, however, the variability &mscale is
comparable to the sampling rate of observations, the mewwmsnts
in pairs may appear anticorrelated (correlationfioentl; ~ —1,
Sectior Z.B) rather than uncorrelatéd+ 0), resulting in near-zero
or negative value of (J) and rendering the index insensitive to the
variations. The actual value of detectable variabilityeistale is
determined by the data and will be venyffdrent for data sets in-
cluding observations taken minutes apart and data setsthade
only observations taken onftérent nights.

2.10 Stetson’s], K and L variability indices
A more robust variability index proposed @@996) i

kilwk sgn@.) VIPd

=k (12)

Ms

Wik

k=1

where sgn is the sign function. Here the photometric data set
is divided inton groups each consisting of two or more quasi-
simultaneous observations (in one or more filters) or a sjrigb-

The definition ofPy can be generalized for groups containing more
than two measurements by multiplyirky (for a pair) by an ad-

ditional factor of( 1/% %) wherer; are the observations in the

third filter or subsample. For simplicity, in the implemetida of

the Stetson indices used throughout this paper, we do neidsm

groups containing more than two points and do not allow atgoin

be counted as part of more than one group (sedFig. 1 and[Table 2
Instead of using the weighted arithmetic mean to devive

@he) suggests to use an iterative re-weightiocegure

to down-weight potential outlier points. After computings the
weighted mean at the first step, weights of all points areiplidtl
by a factor

N V-V
ny— lu'v

(14)

and v is re-computed with these new weights. The procedure is
repeated until it converges.

Many types of variable stars show continuous brightneds var
ations (with notable exceptions, the Algol-type eclipsbigaries
and flare stars, which remain at about constant brightnesg mo
of the time only occasionally showing large variatior@h
@) suggests to supplemehtwhich is a measure of the degree
of correlation between consecutive brightness measursmsith
a robust measure of the kurtosis (‘peakedness’) of the rhaimi
histogram:

*V
oy

nvl

For a Gaussian magnitude distributidﬂ,N—> V2/r or will be

less if there is an outlier point in the lightcurve making therall
magnitude distribution more ‘peaked’.
The two indicesJ and K can be combined to the index
6):

L = \/23K() | w/wa) (16)
where " w/wy) is the ratio of the weights of all of the lightcurve
points to a total weight that the star would have if it had bsec
cessfully measured on all images. This ratio is designeédaage
the combined variability indek value for stars with a small num-
ber of measurements for the reasons outlined in SecfidnTds .
combined index is designed to maximize chances of detefmion
well-measured continuously variable stars. It is lefsative for
objects that show brightness variations only occasion@lgol-
type binaries, flare stars, transient events).

K=

(15)

2.11 Stetson’s variability indices with time-based weigtihg:
J(time), L(time)

lated measurement. A single-filter lightcurve can be dididgo
subsamples to mimic multi-band data in the same way as for the
index (Sectio 2]9), with the fierence that isolated points can be
kept in the analysis. Each group consisting of one or monetp@s
assigned a weighti. Py is defined as

Ny bi—E
Np=1 oy

-1

YV
-1 oy
\2

Ny
-1

) pair

Pk = (13)

av;

single observation

Zhang et &ll.[(2003) arid Fruth ef al. (2012) suggested to wigh

pairs used to compute Stetsod’dex (Sectiofi 2.10) according to
the time diference between the observations used to form a pair:

iy — )
At )
wheret; is the time of observation and At is the median of all
pair time spanst{., — t;). This weighting scheme eliminates the
need to choose a specific maximum allowed tinfeedénce AT max,

Sectio 2.D) for forming a pair.

Wi = exp(— (7
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Figure 1. Single-band lightcurve simulated asn = 110 +

0.5sin(JD- 24570000) + noise is divided into subsamples to calcu-
late Stetson’s variability indices (Sectiofs]2.9 dnd P.I0he arrows
indicate the order in which lightcurve points are consideff@st to last
(subsample names in lower case) or reverse (subsample nameper
case).ATmax = 1d. Dashed line is the weighted average.The weights are
iteratively scaled by the factdt, see equatiol {14), Sectibn 2.10. The open
circle is an ‘outlier’ 1 mag brighter than it should be to &l the sine
curve.

Table 2. Simulated lightcurve divided into subsamples

JD (days) m (mag) oj(mag) subsamples
2457001.50000 11.497 0.025 bB
2457001.70000 11.517 0.028 wW
2457002.40000 11.305 0.025 bB
2457002.60000 11.246 0.018 wW
2457004.60000 10.517 0.016
2457006.40000 11.032 0.021 b
2457006.50000 11.111 0.020 vB
2457006.60000 11.143 0.023 \Y
2457008.30000 10.451 0.023 b
2457008.40000 11.408 0.023 vB
2457009.30000 11.054 0.022 \%

2.12 Stetson’s variability indices with a limit on the
magnitude difference in a pair: J(clip), L(clip)

The example presented in F[g. 1 shows that it is undesirable t
form a pair that would include an outlier point. Considerihg
assumption that a lightcurve contains pairs of observattaken
close in time (compared to the expected variability timalsc
one can discard from the calculation lo{SectiofZ.D) orJ index
(Sectior Z.ID) pairs with magnitudefidgirence between the points
greater than a few times the measurement uncertainty. Itests,
we do not form pairs from measurements thafediby more than
five times their combined uncertainty, no matter how closgnie
the two measurements are taken.

2.13 Consecutive same-sign deviations from the mean
magnitude (CSSD)

\Wozniak (2000) and Shin, Sekora & Byun (2009) suggesteddo us

the number of groups, CSSD, containing three consecutivee- me
surements that are brighter or fainter than the mean (orangdi
magnitude by at least a factor af as a variability indicator. Typ-

© 2016 RAS, MNRASD00,[1-60
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ically, the value oft is set to 2 or 3. In the algorithm implementa-
tion tested in this work, we choose= 3, replacer with the MAD
value scaled tor (SectiofZ.B) and use the median as the baseline
magnitude level, in order to make the index more robust again
outliers. Following Shin, Sekora & Bylin (2009) we normaltze
number of groups byl — 2), whereN is the number of points in a
lightcurve.

2.14 Excursions,Ey

IPlavchan et all (2008) and Parks etlal. (2014) point out theatrgl-
based photometric time series can often be naturally divide
groups (scans) — dense series of observations separatemhdpy |
gaps. If the variability time-scale is longer than the diarabf an
individual scan, average magnitudes wilffdr from scan to scan.
Combining observations within a scan to form a single esgénoé
brightness has an obvious advantage of giving a more aecesat
timate (compared to an individual measurement) at the esepeh
degraded time resolution.

To compare mean magnitudes of the scans, one could perform
the analysis of variance (ANOVA; e.g. Kenney & Keeping 1956)
However, a lightcurve obtained with a ground-based telesds
likely to violate the assumptions behind the parametrimfof this
test. The variance of measurements mdjedibetween the scans
(if the observations combined inftirent scans were performed
at different elevations or weather conditions). The distributibn
measurements may be non-Gaussian due to outliers. It iditemp
to use a non-parametric test (like Mood’s median test) top=me
scans without having a pre-conception about the measutesnen
ror distribution. However, when applied to a typical grotbabed
photometric data set, such a test would give the (matheatigtic
correct) answer that the majority of stars are variable dugght-
to-night photometric zero-point variations.

In the algorithm implementation tested here, we use the-abso
lute difference between the median magnitudes of scans normalized
by their combined MADs (Sectidn 2.3) and averaged over atkpa
of scans in a lightcurve to form the variability ind&. In practice,
the exact way a lightcurve is split into scans has a strongainpn
the usefulness of this variability test for a given data ¥és. di-
vide the lightcurve in scans according to a predefined maximu
time difference. This implies that each scan may havefferaint
number of points. For each scan we compute the median and MAD
scaled too (Section2.B) of the observed magnitudes during this
scan. The indeg, is computed according to the equation:

2 Nscan—1 Nscan

median — median)|

E = —-—
* Nscar(Nscan— 1) =1 o 02 + o2
, i i

(18)

whereNscan is the number of scan®scar(Nscan— 1)/2 = Cﬁ,scan is
the number of two-scan combinations in the data set, medrzh
o corresponds to median and MAD scaleditof theith scan and
the same notation is used for tfth scan, respectively.

2.15 The von Neumann ration

The ratio of the mean square successiv®edince to the distribu-

tion variance was discussed by von Neumann (1941,/1942) as an

indicator of independence for a series of observations.defined




N-1
igl(rml -m)?/(N-1)

- . (19)
El(m -m)?/(N-1)

It remains useful even if the observations are drawn fromra no
Gaussian distribution as long as it is nearly-symme
2006/ Strunav 2006).
The ratio n quantifies the smoothness of a time series.

' n_(2009) employedas a variability indicator,
noting that since photometric time series measurementstiolh
low a Gaussian distribution, in practice, the ctitx@lue for select-
ing variable objects cannot be determined a priori (as ircHse of
x?, Sectiori Z11). One may usgrjlas a variability indicator to have
larger values of the index corresponding to a greater hield of
an object being variable as is the case with the other vditiaioi-
dices discussed here.

2.16 Excess Abbe valu€4

[Mowlavi (2014) discussed the Abbe valife= /2 and the excess
Abbe value

Ea = Asp— A (20)

where gy, is the mean offl, ; values computed for all measure-
mentsm; obtained at time§. EachAs,, jis computed over the sub-
interval i — $ATsup ti + 3ATsud] (ATsup < AT, the overall duration

of time series). The choice dfTg,, determines the minimum time-
scale of variability that may be detected by comparifgy, ; to A.

Ex may be useful to identify unusual behaviour in well-sampled
lightcurves. A large number of measurementsy in our imple-
mentation) should be taken within the time inter&dk,, from each
point to accurately determin@g i.

2.17 Sg variability detection statistic

The y? statistic applied to photometric time series data consider
only the distribution of the measured magnitudes ignorhrgin-
formation on when these measurements were obtained. Thus th
x? statistic cannot distinguish between the cases where sk
deviations in one direction from the mean value are randatidy
tributed across the lightcurve from the cases where manyef t
same-sign deviations are concentrated around a specifc(thne
second case is less likely to occur by chance).

[Figuera Jaimes etlll (2013) suggested a variability detec-
tion statistic that combines the advantages of scattexebasd
correlation-based variability indices. It is based on thtarm’
statistic used b rth_(2006) to assess the
quality of fitting binary lightcurve models to observatiorata.
Arellano Ferro et al[ (2012) applied a similar statistic &tett the
Blazhko dfect in lightcurves of RR Lyrae stars. The variability de-
tection statistic is defined as

1 M
Sg=(—
o~ %
whereN represents the total number of data points in the lightcurve
andM is the number of groups of consecutive residuals of the same
sign from a constant-brightness light curve modgl,= |m — m|
(j is the running number in the group containkigame-sign devi-

ations from the meam) ando; j are the uncertainties correspond-
ing tor; ;.

li2

Ji2

2
ria Fik
e +I;k‘

O—i,ki

(21)

Ti1

Table 3. Test data setd\yor — number of variable stars identified in the data
set, Nstars— total number of stars arld — maximum number of lightcurve
points.

Dataset  Nyar/Nstars N Time range Miim Sec.
TF1 27321543 3900 2012-05-14 to 2013-08-19 R8 [31
TF2 51/ 8438 8004 2014-09-05to 2014-11-22 R6 [371
Kr 23529298 1171 2012-08-13 to 2012-10-18 17 [B2
W1 8(Q 2615 242 2006-06-14 to 2006-07-24 19 [33

And 1 12429043 132 2011-10-31to 2013-05-23\1%4 [34
SC20 46530265 268 1997-10-05 to 2000-11-24 21 [33

66 Oph 266337 227 1976-02-04 to 1995-08-19 BY [38

 Unfiltered magnitude calibrated againstzero-point.
# Photographic magnitudes calibrated agaBgero-point.

3 TEST DATA SETS

To compare the relative power of the indices (Sedtion 2)émiidy-

ing variable objects we use seven photometric data setaiocorg

a large number of known variable stars (Table 3). The dat set
represent a range of sampling patterns and measurememngaccu
cies. Due to the diversity of instruments and reductiontagias,
the data sets are characterized by a variety of numbers &f bad
measured objects that contaminate the lists of candidaizbles.
Overall, the selected data sets should represent a rangs@fuing
conditions typically found in ground-based variabilityngeys.

The data sets used for our variability indices test were pre-
viously searched for variability and contain 1097 knownialale
objects. While preparing this publication we manually destthe
lightcurves of all stars standing out in any of the variapiindices
plotted against the mean magnitude (Eig. 3). We were ableto-i
tify 124 variable stars that were missed in the original cees.
New variable staswere found in each one of the test data sets.
This highlights the fact that variability detection tectués used in
previous searches can be improved by adding (a combinafjon o
the variability indices considered here (Secfibn 2).

3.1 The Kourovka Planet Search (TF1, TF2)

As our test data we used observations of two dense sky fiettig in
Galactic plane conducted within the framework of the Kolweov
Planet Search (Burdanov eilal. 2016). The first field (TF1) otas
served with the MASTER-II-Ural telescope at the Kourovka As
tronomical Observatory of the Ural Federal University= 57° N,

A =59 E). The mean full width at half-maximum (FWHM) seeing
at the site is 3arcsec. The telescope consists of a pair oflHam
ton catadioptric tubes (400 mifi2.5) on a single equatorial mount
Astelco NTM-500 without autoguiding. Each tube is equipp#ith
4098x 4098 pixels Apogee Alta U16M CCD giving an image scale
of 1.85 arcsec pixet in a 2x 2 ded field. The field TF1is centred
at 32000=20:30:008 32005=+50:30:00 (Cygnus). The main observ-
ing set of TF1 was completed during short and bright nighasfr
2012 May to August. We obtained 3900 frames with an exposure

6 Information about known variable stars was extracted from
the AAVSO International Variable Star Index (VSX on
; https://www.aavso.org/vsx) and VizieR service

(http://vizier.u-strasbg.fr/). Variable stars were considered
‘new’ if no information about their variability could be fod in these
services.
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time of 50 s in theR filter. The time interval between consequent
frames was about 1.5 min. TF1 was observed for 90 h ifktband
(36 nights) with an average duration of 2.5 h per observimg ru

The second field (TF2) was observed with the Rowe-
Ackermann Schmidt astrograph (RASA) telescope (279 ffrR)
at the Acton Sky Portal private observatory € 43 N, 2
71° W). The telescope is equipped with a 33%22532 pix-
els SBIG STF-8300M CCD which provides an image scale of
1.79 arcsec pixet in a 12x 1.6 ded field. The typical seeing at the
site is 2 arcsec. TF2 is centredoaboo=02:47:000 32000=+63:00:00
(Cassiopeia). The RASA telescope obtained about 8000 Fame
of TF2 in 2014 September—November during all availablerclea
nights. Observations were performed in fRédilter with 50 s ex-
posure time. The time interval between the consequent Bame
1 min. The field was observed for 130 h (18 nights) with an ayera
duration of 7.2 h per night.

Before processing the data, we had to filter out some of the
images because not all of them were obtained in optimal weath
conditions. We use the standard deviation of image pixehtsou
opix as an indicator of weather conditions. The valuergf varies
smoothly from image to image in photometric nights. In thespr
ence of cloudsr, value of a particular image noticeably decreases
(or increases if the clouds are lit by the moonlight).

We used the console version of therromeTrY.NET applica-
tion mm@ to set the correct World Coordinats-Sy

9

After comparing results of aperture and PSF-fitting photom-
etry performed using S&ractor (Bertin & Arnouts| 1996) with
PSFK ), we discovered that for the brightest stars in
the field, the aperture photometry is about a factor of 2 mare a
curate than PSF photometry probably due to theffigant accu-
racy of the reconstruction of PSF variations across the.fl&e
applied six iterations of SRem 5,
IMacfarlane et dl. 2015) to removefects of these variations and
bring scatter of PSF-photometry lightcurves for the brigtars
to the level of scatter obtained with the aperture photoynetr
For the final analysis we used-dRem-corrected PSF-photometry
lightcurves as they provide better measurement accuracthéo
faint stars compared to fixed-aperture photometry. Onliated
objects with SErractor flag = 0 and measured on at least 200
images were considered. The instrumental magnitude scabdit
brated to CousinR = V—-1.09«(r—i)—0.22 5) com-
puted from UCAC4APASSV, r andi magnitude al.
[2013, Henden et &l. 2016) of 2644 stars in the field. Theseémag
were originally investigated by_L apukhin, Veselkov & Zubea
(2013) and| Lapukhin, Veselkov & Zubaréva (2016) who used

VaST with SETrAcToR in the aperture photometry mode and iden-
tified variable objects using the-mag plot.

3.3 LCO 1m Swope telescope (W1)

tem parameters in the FITS header of each image. IRAF packagegpservations of the Galactic super star cluster Westedlunere

(Tody[1986) is then used to perform dark frame subtracticsh an
division by the flat-field. Dark frames are taken before eagsh o
serving night. Flat-field images are taken during the dawme T
pHOT/APPHOT task is used to perform aperture photometry in each
frame with aperture size and sky background level adjusted f
each image. The aperture radius is set ®FWHM of the stel-

lar PSF in the frame. A total of 21500 and 8500 stars were mea-

sured in TF1 and TF2 fields, respectively. Therokir software
(Burdanov, Krushinsky & Popov 2014) is used to correct fa th
star brightness variations caused by changing atmosptraris-
parency. The program selects for each star an individuarebke
of reference stars having similar magnitudes and positiorike
frame. We achieved photometric accuracy of 0.005-0.05 mtggi
interval 11-16 mag for data from the MASTER-II-Ural telegeo

For the RASA telescope data, we achieved precision of 0.006—

0.08 mag in the magnitude interval 11-16 mag for the TF2 field.
These lightcurve data were originally searched for valiigtbby

[Popov et al.[(2015).

3.2 Krasnoyarsk SibSAU 400 mm telescope (Kr)

A 2.3x 2.3 ded field centred atx;005=22:50:008 1005=+52:00:00
(Lacerta) was observed with the 400 mif2.3 telescope of the
Siberian State Aerospace University using the 3858056 pix-
els (2.7 arcsec pixel) unfiltered CCD camera FLI ML09000. The
telescope is installed on top of the University building e tity

of Krasnoyarsk. The turbulence caused by the building tesal
7-8arcsec seeing. The observing site fie@ed by light pollu-
tion. A total of 1171 30s exposures of the field were obtaimed i
2012 August—October. After applying bias, dark and flasfiedr-
rections using the WkIm DL software the images were loaded into

VaST (Sokolovsky & Lebedél 2005) for photometric analysis.

7 http://scan.sai.msu.ru/vast/

© 2016 RAS, MNRASD00,[1-60

obtained during 17 nights between 2006 June 14 and July B4 usi
the 1 m f/7 Henrietta Swope telescope at Las Campanas Obser-
vatory, Chile b $ (2007) who identified 129 new vdeab
stars in the field using image subtraction. A 1200200 pixels
section of the 204& 3150 SITe CCD (0.435 arcsec pix¥l corre-
sponding to & arcmin field of view was read to increase cadence.
The initial image processing steps including overscamention,
linearity-correction and flat-fielding were performed inAR We
re-processed 24Rband images (including some rejected from the
original study due to poor seeing) withaST, performing PSF-
fitting photometry using S&ractor and PSFE. The magnitude
scale was calibrated usirigband magnitudes of 1276 stars in the
field measured @)07). We considered only isbtdie
jects (Skrractor flag = 0) detected o 100 images to minimize
the dfects of crowding. Three cycles oiSRem are applied to the
data. From the list of Bonarlds (2007) we select 78 objectsisigo
detectable variability in thé-band and pass our selection criteria.
We add two previously unknown variable objects found dudog
tests (Table 4, Fig. 2).

3.4 The New Milky Way survey (And 1)

The New Milky Way surv@ kolov

m) hunted for bright\( < 135 mag) transients near the Galac-
tic plane using a CanonEF = 135 mm (f/2) telephoto lens at-
tached to an unfiltered 33522532 SBIG ST-8300M CCD cam-
era (8.4 arcsgpix, 8 x 6 ded field). The observations were con-
ducted in 2011-2013. We used 132 images of the field centred
at x3200=23:00:00 832000=+50:00:00 (And 1 reprocessed with
VAST and Skrractor in the aperture photometry mode accept-
ing blended stars for the analysis (Gkactor flag < 3). Since the

8 http://scan.sai.msu.ru/nmw/
® The And 1 field fully includes the deeper SibSAU 400 mm Lacéeikl
described in Sectidn 3.2.
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Table 4. New variable stars found in the test data (the full table &lakle online)

Name Alias 32000032000 Mag. range Type Periodi) Epoch
ogle17707 LMCSC2Q17707 05:44:59.7970:53:45.1  17.85-17.951 SR 86 max 2451164.798
0gle33977 LMCSC2Q33977 05:45:07.1670:38:57.3  19.00-19.31 EEEP: 8.220 min 2450842.770
ogle 14141 LMCSC2Q14141 05:45:07.9570:56:55.9  17.65-17.751 SR 34.5 max 2450726.854

I ogle_17707 SR 86 | ogle_33977 E: /CEP:. 8.22 I ogle_14141 SR 34.5
17.8 18.6 .
. ﬁ"#’l&é&-‘n}p A |
19174 \ -.: £1, .3/ -
182 192}, {oR ... : - o t _.f’t?
18.4 19414, .....:: ,-.,.:
19.6 ¢
186 o . . . . .
0 05 1 0 05 1 0 0.5 1
phase phase phase

Figure 2. Lightcurves of new variable stars found in the test data(&etscomplete figure is available online). The magnitudeasueed in a band indicated
in the top-left corner of each panel are plotted as a funaticime (Julian day) for irregular or phase for periodic ebies. The title of each panel indicate
the object identifier in Table 4, its variability type and iperin days (if applicable).

CCD chip is blue-sensitive, APAS®-band magnitudes of 1200
UCAC4 stars within the field of view are used for magnitude-cal
bration. Three cycles of\SRem were applied to the data in order
to mitigate systematicfiects caused by chromatic aberration of the
lens and changing atmospheric extinction across the lastge df
view. We used threexSRewm cycles as adding more cycles did not
further improve (reduce) lightcurve scatter for the mayodf ob-
jects in this data set.

Lightcurves and images of all objects that stand out in index
versus mag plots were visually inspected for variabilitg Menti-
fied 91 known and 33 previously unknown variable stars (Tdble
Fig. 2). The list of detectable variable stars in the field rhayin-
complete as we accepted only those red objects showing slow i
regular variability that are either matched with a knownialale
star or their variability can be confirmed from ROTSE$VS
(Wozniak et all 2004) or SuperwASP (Butters éf al. 2010hiaed
data. This should safeguard us from mistaking for real téria
ity any residual colour-related systematics not removedShy
Rem. An example of such residual systematic variation is the dip
around JD2456000 visible in the lightcurves of many red (8R a
LB type) variables in the field (Fig. 2). As the final check we re
peat the processing using elliptical aperture of size ar@htation
that are individually tuned for each object (&kactor parame-
ter MAG_AUTO). This allows us to recover the flux of defocused
red stars at the cost of reducing photometric accuracy towntll-
focused point sources and make sure that for the selectablear
star candidates the MABUTO lightcurve shape is not contradict-
ing the one obtained with a circular aperture of a size fixedfo
objects in a given image.

3.5 OGLE-Il (LMC _SC20)

The Optical Gravitational Lensing Experiment utilizes tthed-

affected by crowding. To keep the number of selected sources be-
low the limit of 50000 imposed by the database’s web-intarfand
retrieve only high-quality lightcurves, we selected sesrbaving
the percentage of good measurements Pgo88. In total, 30265
sources in this field satisfy the selection criteria eachirtgafrom
262 to 268 photometric measurements. The data set contéis 1
variable stars 20 of which (see Table 4, Fig. 2) were not presty
known. The new variable stars were identified by visual inspe
tion of the lightcurves standing out in variability indexrsas mag
plots. To make sure the detected variability is not causeatayby
bright variable stars, we visually checked PSF-fitting foginves

of stars located within 20 arcsec of each of the new variaesy
stars brighter than the variable were considered and nodimthe
percentage of good measurements was applied.

The use of a fixed centroid position when conducting photom-
etry may introduce spurious long-term variability if the asared
star has a detectable proper motion. If the DIA is used, the-mo
ing star will have a characteristic dipole shape in the resiéhm-
age, resulting in detection of two spurious variable sosiag@par-
ently changing brightness in opposite directi
[2001). To make sure the variability of ogi8681, 0gle63585 and
0gle 72706 is not caused by the proper motion, we (i) check that
there are no records in the OGLE-II DIA catalogu et
(2001) within 3 arcsec of the new variables and (i) manueltigck
OGLE-II DIA lightcurves of nearby sources to make sure nohe o
them show brightness trends mirroring the new variables.

3.6 Digitized photographic plates (66 Oph)

Photographic images of the sky obtained in late 19th and 20th
centuries contain a wealth of information about historipaki-
tions (e.g. Laycock et &l. 20110, Vicente etlal. 2010, Robeatle
2014, | Berezhnbl 2013) and brightness (é.g. Kolesnikova et a

icated 1.3m Warsaw telescope at the Las Campanas Ob-2008, [Tangetall 2013, Sokolovsky et al. 2014b) of celestial

servatory, Chile, to conduct a photometric survey of dense objects. The ficient use of this information requires it to

stellar f|elds in the Magellanlc Clouds and Galactic bulge
7). We extract data from the
second phase of the experiment OGLE-Il ASifand photometry

database (Szymaniski 2005). For the variability index testselect
one field in the Large Magellanic Cloud, LM8C20, which is least

be converted to a digital form using purpose-built digitiz-

ing machines | (Simcoe etlal. 2006, De Cuyper etal. [2012) or

a commercially-available flatbed scanners capable of wgrki

with transparent materials (Vicente, Abad & Gaizon 200mh®e
12009, Tuvikene et al. 2014).
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We use an Epson Expression 11000XL flatbed scan-
ner operating at 2400dpi resolution .4hArcsefpix, 16 bits
per pixel colour depth) to digitize a.26 x 1.26 ded area
centred at X3200=17:57:44.7 d3300=+04:59:54 (66 Oph field;
[Kolesnikova et 8l 2010) on 227 photographic plates obtaine
in 1976-1995 with the 40 cm astrograph. The digitized images
were processed withABT following the procedure described by
ISokolovsky et dl.[(2014a). APASB-band photometry of 1600
UCAC4 stars in the magnitude rand®&=10-16 is used to cali-
brate the instrumental magnitude scale using the relattween
aperture photographic and photoelectric magnitudes gexpby
Bacher, Kimeswenger & Teutsch (2005). We identify 23 vddab
stars including five not previously known (Table 4, Fig. 2yhgans
of period search and visual inspection of lightcurves stamodut
in the magnitude versus,, plot.

3.7 Lightcurve filtering

11

has an advantage over simple bootstra@imgthat it preserves
the correlated nature of the noise. It naturally requirestatcon-
stant stars to have multiple realizations of the noise E®e¢ile
the bootstrapping can be applied to an individual lighteurv

From each set of lightcurves described above we remove the
known variable stars and introduce artificial variabilitythe re-
maining stars that are presumed to be constant. Among tlese c
stant stars there are both well-measured ones and sbectea by
blending or other sources of large photometric errors. Adiog to
the simulation parameters, each star has a 1% chance toibe var
able with a random peak-to-peak amplitude uniformly distteéd
between 0 and 1.0 mag. The simulation is done in two versions:
in version 1 all variables are assumed to be periodic whilén
second version they are all assumed to be aperiodic.

We model periodic variability by adding a simple sine signal
(e.gMislis et al. 2016) to the observed lightcurve of a tansstar.
The signal phase is chosen randomly for each simulatedblaria
star. The frequency of the sine signal is drawn from a unifoam
dom distribution in the range 0.05 — 20'd This results in a large

Often raw photometric data have to be pre-processed beforefraction of variables with periods 1 d approximately resembling

computing the variability indices discussed in Sectidn RisT
may include (i) removing outliers from a lightcurve (posgiby
applying iterativeo-clipping or median filtering); (ii) removing
systematic ffects from a set of lightcurves by applying lo-
cal zero-point corrections (e.g._Nascimbeni etal. 2014)/an
the SvrsRem algorithm, decorrelating each lightcurve with ex-
ternal parameters such as airmass, seeing, object position

the period distribution typically found in the Galactic tiel

To simulate non-periodic variability we sum-up 10000 sine
waves with logarithmically spaced frequencies in the rah§601—
1000 d* and having random phases. The amplitude of each sine
wave is the square root of the power spectrum value. If theareh
imaginary parts of the Fourier transform of the lightcurve imde-
pendent and vary according to the Gaussian distribUtiom(@ate

a CCD, detector temperature (e

[g.| Pal 2009, Bakod et ald,201 [2012), the resulting power of the sine waves is varying atiogr

Lopez-Morales et al| 2010, _Hartman et al. 2011, Burtonletal to they? distribution with 2 degrees of freedo nig
12012 | Guterman, Mazeh & Faidler 2015, Baade Et al.|[2016) or de (1995 Emmanoulopoulos, McHardy & Papadakis 2013) arouad th

trending the lightcurves if one is interested only in fastiaaility

(e.g.Kovacs, Bakos & Noyes 2005, Weingrill 2015).

expected values. The expected values in our simulationediead

by a power law with the slope of1 (e.g. Max-Moerbeck et al.

A smaller-than-expected number of detections is an intlirec [2014). The exact choice of the power law slope in the rarg8

indication of many photometry problems including the objee-
ing close to an image edge, a cosmetic defect, a bright sth; a
tection or saturation limit. Objects systematicalljeated by any
of these problems can be removed from the analysis by discard
ing lightcurves having less than a given number of pointe di-
vious disadvantage is that together with problematic dbjemne
may discard a transient object that appears only on a smat nu
ber of images. The power of discarding lightcurves with alsma
number of measurements to improve the overall quality of@ ph
tometric data set might be the reason why ‘variable starctieteé
and ‘optical transient detection’ are traditionally calesied as two
separate technical problems.

From all the data sets considered in this work we discard
lightcurves having fewer than 40 points, unless indicatedmvise.
We apply noo-clipping to the test data, however we note that it
can considerably improve performance of variability irdidhat
are not robust to outliers. TherSRem algorithm is applied to the
data sets described in Sectidng 3.3[and 3.4. For the ddbe
sets it does not lead to a noticeable reduction in lightcepatter.

3.8 Simulated data sets

The data sets described above (Sedflon 3) include in tofal ¥2ri-
able stars of various types, but this list still providesiosted cov-
erage of a possible range of variability amplitudes and t&edes.
We overcome this limitation by adding simulated variakitid the
test data. Following Enoch etldl. (2012), we use lightcuofesn-

variable stars as realistic photometric noise models. @pgoach
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to —3.0 has minimal &ect on the following discussion. The simu-
lations are repeated 1000 times for each data set and thagader
results are reported.

4 COMPARISON TECHNIQUE

To select the variability index that is the mofiigent in identifying
variable stars, we compute the indices defined in SeEliom alfo
lightcurves in the test data sets (Secfidn 3). The variabjects
have to be distinguished from two broad types of interlopeos-
variable objects and objects with corrupted photometryjdantify

the performance of each index followihg Kim et al. (2011byi an

Graham et &l (2014), we compute the complete@ssid purity

R

3 Number of selected variables
~ Total number of confirmed variables

(22)

3 Number of selected variables
" Total number of selected candidates

(23)

10 Here by bootstrapping we mean $hing JD-magnitude pairs in a
lightcurve to eliminate any correlated variability. Thetinads is often used

to assess the significance of a periodogram pealmmy
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as well as the fidelitFl-scorE which is the harmonic mean of the
two parameters:

Fi1=2(CxP)/(C+P). (24)

F, reaches a maximum of 1.0 for a perfect selection when all con-
firmed variables and no false candidates pass the selectieria
while F1 = 0 if no confirmed variables are selected.

For each variability indexA, described in Sectidd 2 we com-
pute its expected valua and dispersionr as functions of mag-
nitude. The operation is performed for each data set thhides
real (Sectiol B) and simulated (Sectonl3.8) variable dbjeeor
each point in the magnitude versus index (magplot we use
points within+0.25 mag from it to comput@ as a median of in-
dices within the magnitude bin. If the bin containgl0 points, its
width is increased to include at least 40 points. The expedis-
persionoa, is computed as the MAD scaled ¢o(Sectior 2.B) for
the points in the bin. After completing these computatioorsail
the points in the magnitude—index plot, the estimated wabfeA
ando, are smoothed with a simple running-average. The robust es-
timators of A ando, are necessary considering that a bin is likely
to contain variable or badly measured objects that haveuviity
index values not typical for constant stars.

Variable star candidates are selected as objects having-a va
ability index value deviating by more thaar, from the valueA
expected at this magnitude, wheads a factor defining the vari-
ability detection threshold (Fi@l 3). This approach is &mio the
one employed by Barclay etlal. (2011) who selected perioaliis v
able stars using a cut in false alarm probability (FAP)-@e:Epace.
The authors used the median and MAD as robust estimatorg of th
expected FAP value and its scatter as a function of a periblikéJ

' inl(2010), we compare the vailip
indices not at some specific cufftevel acommon for all indices,
but instead choose the optimal valueaohdividually for each in-
dex as described below.

For each index and data set we compQtd® andF; param-
eters as functions o (Fig.[d). For some optimal value @ F;
reaches the maximunf; max corresponding to a tradefdetween
the completeness and purity of the selected list of caneldat/e
consider the index with the highest valueFaf .« as the most fé-
cient in selecting true variable stars in a given data setd@ypar-
ing results for various data sets (Sectibhs 3[ant 3.8), we gea-
eral conclusions about which indices perform better undeide
range of observing conditions (Sectigh 5). Sifgecharacterizes
only the list of selected candidates and does not considereth
jected ones, we also report a fraction of objects that do aesp
the selection (at the cutfiovalue corresponding tB; may), R, as a
supplementary measure of variability index performance.

5 RESULTS AND DISCUSSION
5.1 Overall performance comparison

Fig.[d presents the variability index—magnitude plots. Eoben-
pleteness, purity ané;-score as a function of the cuffdimit,
acp, are presented in Fif] 4. Tallé 5 lists the high€éstscore,

11 The three parameters are often referred to as ‘recall’ arsisieity’ or
‘true positive rate’, ‘precision’ andF-factor’ for C, P andF, respectively.
See https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Information_retrieval
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Figure 3. Variability indicesy2 ; (Sectior[ZIL) o (SectiorZR) and /iy

(Sectior 2.1b) plotted as a function of magnitude for theskoyarsk data
set (Sectiofi3]2). Variable stars are marked with 'x’. Theves represent
the expected value erzed, ow and Yn for a given magnitude and the selec-
tion threshold corresponding to the best tradiébetween the completeness
and purity of the candidates lisEqax; see Sectiofl4, Fi§l4). The index—
magnitude plots for the other indices and data sets may belfonline at

http://scan.sai.msu.ru/kirx/var_idx_paper/,

F1 max and the corresponding fraction of rejected obje&sfor
each index and data set described in Sedfion 3. Tables 6 and 7
(available online) present this information for the simethdata
sets discussed in Section13.8.

While performance of each individual index varies consider
ably between the data sets, the correlation-based indi¢8gc-
tion[2.9),J, L (including their time-weighted and clipped versions;
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Figure 4. Variable star selection completeness (C), purity (P)@ndcore (F; see Sectifh 4) as a function of selection thrdsbokhe variability indices(fed
(Sectiof Z1L)¢ (Sectio 2.2) and /i (Sectior 2.16) computed for the Krasnoyarsk data set (8¢8iR). C-, P-, ané1-score plots for the other indices and
data sets may be found onlinetattp: //scan.sai.msu.ru/kirx/var_idx_paper/

Table 5. Performance of variability indices in selecting real valgastars

TF1 TF2 Kr Westerlund 1 And 1 LMGSC20 66 Oph
Index Fimax R Fimax R Fimax R Fimax R Fimax R Fimax R Fimax R Sec. Ref.
Scatter-based indices
szed 0.110 0.902 0.076 0.884 0.723 0.993 0.270 0.969 0.556 0.99628400.996 0.192 0.992 [2.1 (a)
ow 0.114 0.899 0.076 0.879 0.697 0.995 0.264 0.950 0.544 0.99625400.994 0.155 0.988 [2.2 (b)
MAD 0.161 0.927 0.086 0.940 0.710 0.994 0.287 0.940 0.5820@.9 0.483 0.994 0.375 0.996 [_2.3 (c)
IQOR 0.162 0.927 0.086 0.951 0.726 0.994 0.298 0.945 0.60860.9 0.470 0.992 0.383 0.997 [_2.4 (d)
RoMS 0.130 0.917 0.070 0.922 0.729 0.993 0.270 0.963 0.56860. 0.382 0.993 0.381 0.997 [_R.5 (e)
"'ﬁxs 0.026 0.198 0.012 0.197 0.047 0.731 0.059 0.522 0.032 0.75203400.754 0.324 0.992 [2.6 )
v 0.053 0.835 0.032 0.901 0.347 0.996 0.140 0.984 0.450 0.99704900.899 0.098 0.994 [2.7 (9)
Correlation-based indices
I 0.370 0.992 0.175 0.999 0.400 0.995 0.188 0.935 0.569 0.99647000.996 0.450 0.998 [2.8 (h)
| 0.116 0.896 0.082 0.891 0.819 0.993 0.281 0.973 0.611 0.99450000.996 0.341 0.997 [2.9 (0]
J 0.144 0.927 0.079 0.931 0.819 0.993 0.286 0.977 0.628 0.99444800.994  0.368 0.998 [ZN0 [0)
J(time)  0.152 0.931 0.081 0.932 0.819 0.992 0.291 0.975 0.68®5 0.519 0.996 0.410 0.998[ 211 (k)
J(clip) 0.134 0.922 0.074 0.917 0.788 0.993 0.267 0.977 0.8805 0.375 0.991 0.364 0.997[ 212 (d)
L 0.169 0.923 0.092 0.942 0.821 0.992 0.283 0.979 0.706 0.99647000.994  0.571 0.997 [_Zho (0)
CSSD 0.231 0.957 0.105 0.977 0.014 0.008 0.034 0.013 0.00870. 0.011 0.012 0.008 0.001[ 2113 0}
Ex 0.181 0.973 0.090 0.998 0.347 0.997 0.159 0.983 0.500 0.99735700.996 0.263 0.998 [ 214 (m)
1/n 0.549 0.991 0.414 0.992 0.823 0.993 0.378 0.982 0.588 0.99747100.997 0.424 0.999 [2h5 (n)
Ea 0.154 0.962 0.156 0.995 0.434 0.997 0.250 0.989 0.151 0.99422800.997 0.133 0.999 [ 216 (0)
Sg 0.146 0.893 0.092 0.891 0.766 0.992 0.261 0.982 0.463 0.99330300.989 0.246 0.995 [Zn7 )
a1 0.112 0.878 0.078 0.875 0.782 0.994 0.245 0.961 0.639 0.99544100.994 0.426 0.997 [ 5.4 (d)

@) [(1989), () Kim et al._(2011a),

Sectiong 2.0, 2.1, 2.1 2) angji(Sectior 2.1b) typically provide

higherF; max values than scatter-based indices. Among the scatter-

based indices the IQR (Sectioni?.4) and MAD12.3) show thi-hig
estF; max Values with RoMS[(Z15)q, (2.2) andy?, (2.1) falling
slightly behind due to their sensitivity to individual oietl mea-
surements. Thi (Z.8),Ss (Z.17),Ex (Z14) andE, (2.18) perform
well in some data sets, but not in the others and, therefareat
be recommended as general-purpose variability detedtiistics.
The indiceso?,s (2.8) andv (Z17) typically reach smalleF; max
values compared to the other scatter-based indices.

The CSSD indeX(Z.13) in our implementation appears prac-
tically useless for variable objects detection. The rezmaent for
three consecutive data points to begp brighter or fainter
than the median brightness whergap is theo scaled from the
lightcurve MAD (Z3) appears to be too strict. Indekd, Wakni

) used individual measurement errors to compute CS8e w
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mmmum (1998), (i
(m)[Parks et 21L(2014), () Shin. Sekora & Byln (2009)[ ()] @) (p]Figuera Jaimes ef al. (2013).

References: (4) de Diego (2010), (b) Kolesnikova b1 al. €20@)(Zhang et &1L (2016), (d) this work, (e) Rose & Hirltz@2y, ()Nandra et aI[(1997),
[Brown et al. m

96) J012 9),

IShin, Sekora & Byun|(2009) used the lightcurveto compute

CSSD (similar to our implementation), but it was only oneluf t
many lightcurve features used simultaneously for varitgtiletec-
tion in that work.

The 1/n appears to be the best compromise index as it per-
forms better than most of the other discussed indices irestet
data sets (real and simulated) judging both frBax andR val-
ues. The 1y index is sensitive only to variability on time-scales
longer than the sampling time which causes it to miss fasabkas
in sparsely sampled data sets like LMEC20 [3.5) and 66 Oph
(3:8). If the data set has no measurements taken very cldseen
(compared to the fastest expected variability time-scabe I/n
index sensitive to slow variations should be complementid av
scatter-based index such as the IQR](2.4) that would pitk/éas
ables missed by/3.
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5.2 Performance based on the number of points
in a lightcurve

The results presented in Tablgls 5-7 allow us to identifyciesli
that perform well in all the test data sets (Secfiod 5.1).tAd test
data sets are well sampled containing hundreds to thousdiads
servations. The question remains how well these indice®er
on lightcurves containing a smaller number of points? Téiss-
pecially interesting considering that the alternativeigubsearch-
based methods of variability detection (not consideretigwork)
are ingfective for lightcurves having a small number of points. A
rule of thumb is that: 100 points randomly sampling a lightcurve
3 suggest200 for CRTS sampling) are often
suficient to determine a variable star period. A smaller numlber o
points may be dticient if the sampling is favourable or the range
of possible periods is constrained by prior knowledge ofvidue-
ability type. If the number of observations is too small tteatpt
a periodicity search, variability indices are the best himpédenti-
fying variable stars among such undersampled lightcurves.

To test this we use the OGLE-II LMGC20 data set described
in Sectior[ 3.5 that is characterized by quasi-random saigiie.
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Figure 5. The Fimaxscore as a function of the number of lightcurve points.

For eachN, the random selection df points is repeated 10 times and the
medianFimax value is plotted.

it includes a small number of measurements taken on the samewell two sample populations vary jointly. It ranges fres (total

night). We randomly select a subset fobservations from the
LMC_SC20 data to construct an artificial data set and test how
many known variables can be recovered using the same teshniq
as applied to the full data set (Sectidn 4). The results abirebm-
parison are presented in Figd. 5. Whitg does not show a strong
dependence on the number of points, figax-score of ¥n andl;
linearly increases with increasing number of points in atlgrve.
The IQR atN < 15 showsF1max Values similar tar, but it shows
larger Fimax Values for a larger number of points. The reason for
IQR being more fiicient thano, for large N is that the IQR is
insensitive to outlier measurements. Stetsah&nd L) indices,
MAD and RoMS also behave similarly to the IQR as these indices
can characterize the lightcurve scatter while remainiratively
insensitive to outliers. The Welch—Stetsomdex becomes useful
only for a large number of points because only in this waydtzee
lightcurve points obtained close enough in time to form p&m-
like the J index, | cannot take into account the individual, unpaired
measurementsyg does not show a strong dependence o itgax
values on the number of points, whifgnax values ofEx slowly in-
crease with increasiny. Overall, we can conclude that the indices
characterizing the lightcurve scatter perform well everuoder-
sampled lightcurves while the indices that are purely datien-
based linearly increase theiffectiveness with increasing number
of lightcurve points.

5.3 Correlation between variability indices

Many of the variability indices considered above reflect shene
information, just in a slightly dferent way. Consider, for example,
the three versions of Stetsordsndex described in Sectiohs 2]10—
[212 which essentially fiier from each other only in the relative
weights assigned to various pairs of observations.

To quantify the degree of similarity between the indices we
computed the Pearson product-moment correlatiorfficgent, r,
for all possible pairs of indices using the full data sets. (indices
computed for variable and non-variable objects were censitito-
gether). The linear Pearson correlationficeent of two variables
measures the degree of linear dependence between thelesriab
is defined as the ratio of the covariance of the two varialiehé
product of their standard deviations. It is a direct meastitgow

anticorrelation) to 1 (total correlation). A zero value e®ponds to
a lack of linear correlation (however, non-linear corrielas may
exist).

The majority of variability indices considered in Sectigar2
strongly ¢ > 0.8) correlated with each other. The exceptions are
I1, CSSD, In, E4. This suggests that the correlated variability in-
dices reflect mostly the same information. This is undedshbfe
considering that the indices quantifying the degree ofatation
between consecutive brightness measurements are alstiveeios
the overall lightcurve scatter (with the exception 9f

5.4 Principal Component Analysis

To further quantify the relative importance of the varidpiindices
and to search for a possible linear combination of indicas ity
be a better variability indicator than any individual inder per-
formed the principal component analysis (PCA; Pearson/1901

PCA is an unsupervised, non-parametric method that prsvide
a linear orthogonal transformation of a data set into a neseba
where the data variance (assumed to represent the usedtrhiaf
tion) is highlighted. The new set of (uncorrelated) ‘optihaxes
is called the principal components (PCs). The original databe
expressed as a linear combination of the PCs. Usually, ey f
of the PCs (even two to three of them) are capable of desgribin
the data in terms of variance without a significant loss obiinf
mation. This dimensionality reducti@mata compression is the rea-
son why PCA is very fective in extracting information from huge
data sets. However, the results should be interpreted \aitkian,
since the data may not reflect uncorrelated physical phename
PCA s extensively used in astronomy, e.g. in applicatianstellar
spectr iler- i i i .
2007), on galaxy spectra (Yip et Al. 2004, Karampelas|e1dI2p
on spectroscopic imagin MOOQ), etc. It wag s
gested as a variability detection tool for photometric dais con-
taining quasi-simultaneous multi-colour observatidnge(f22005,

2).

The PCA implementation on an observations) (mfeatures)
data set involves (i)the construction of either (usuallyg tata
variance-covariance matrix or the correlation matrix,tfie calcu-
lation of the respective eigenvectors PCi (the principatponents)
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and (iii) the calculation of the admixture déeientsq;, which are
the data coordinates on the new axes.

Thus, each original observatioris decomposed on to the new
set of axes PCi as

m
x= )" a-PCi
i=1

The first principal component PC1 summarizes the majority
of the data variance (the most widespread information), 2-
marizes the majority of the rest of the data variance, bemmpr
related to PC1, etc. It is expected that low-order PCs cpores to
rargweak processes, noise, e @001).

PCA was applied to each of the test data sets (Selction 3). The
variability indices of the sample’s stars were normalizgdtheir
expected valué\ and scattetr, as a function of magnitude as dis-
cussed in Sectidd 4. Since the indices represéfgréit, albeit of-
ten correlated, characteristics and PCA is data-dependenper-
formed a zero mean and unit variance standardization pritivet
analysis. Additionally, the variance-covariance matrixte data
was used. PCA was implemented in IDL (PCOMP procedure).

We consider the first three PCs. For the Kr data set we find
that PC1 is responsible for 56.5% of the data variance, P€2 fo
8.2% and PC3 for 7.1%. The distribution of variance betwéen t
first principal components for the other test data sets ig sini-
lar. The admixture cd@cients corresponding to the first principal
components are presented in Hilj. 6. Variable objects tehave
large positive values af;, while they may have any, andas val-
ues. This suggests that most of the information relatedrialvisity

in general is encoded in PC1. The components PC2 and PC3 may

encode lightcurve characteristics thaffei for different variabil-
ity types. Fig[¥ presents the relative contribution of taeahbility
indices to the first three PCs. While many scatter and cdioala
based indices provide comparable contribution to PC1,ntieés
l; and&4 contribute less and the contribution f CSSD 03, < is
near zero. PC1 is dominated by the indices that generalfpmer
better in identifying variable objects (Sect[dn 5). Theitadl,, Sg,
X% contribute the most to PC2 whiké, v ando?s dominate PC3.
The admixture ca@icienta; may be used as a composite vari-
ability index since all variable objects tend to have largsitive
values ofa; (Fig.[d). It reaches the value & = 0.659 (Fig[8)
andR = 0.995 on par with the best variability indices for this field
(Table[®), but does not provide an improvement over them. One
possible use at; is to investigate a new data set for which it is not
known a priori which variability indices are most suitablie.this
case, one could compute multiple indices and perform the BICA
them. The cofficienta; is by construction one of the best variabil-
ity indices (that captures most of variability-relatedarrhation)
for this particular data set.

5.5 Limitations of the indices as variability indicators

Besides the random errors (caused by the background andrphot
nois@) that are usually easy to estimate, photometric measure-
ments are subject to systematic error (due to atmosphediénan
strumental variation) that are hard to quantify. Since therall
measurement errors are not accurately known, it is not plesto

12 gcintillation noise may also contribute significantly todam errors in
ground-based photometric observations if conducted viitrtsexposures
and small telescopes ( 012).
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Figure 6. The admixture ca@icients corresponding to PCly), PC2
(a2) for the Kr data set (Section_3.2). Variable stars are maikeckd.
Similar plots for PC3 ¢3) and the other data sets may be found at
http://scan.sai.msu.ru/kirx/var_idx_paper/,
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Figure 7. The first three principal components in the Kr data set
(Section[3:R). The dashed line indicates zero contributidénan in-
dex to the PC. Similar plots for the other data sets may be dcamn
http://scan.sai.msu.ru/kirx/var_idx_paper/

apply they? test (SectiofiZ]1) to select (non-)variable objects. The
absence of accurate error estimates can be substitutedheits-
sumptions that (i) the majority of field stars are non-vadgadnd
(i) stars of similar brightness in a given field are measungith
about the same photometric accuracy. If these assumptigds h
the field stars may be used to measure the actual accuracy of a
given set of photometric observations. The variabilityided (Sec-
tion[2) can be used to select objects showing larger-thaeazd
brightness variations.

Since source extraction is not perfect, in practice theee ar
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Figure 8. Variable star selection completeness (C), purity (P) Bpdcore
(F; see Sectiofl4) as a function of selection threshold feratimixture
codficienta; used as a composite variability index (Secfiod 5.4) conmpute
for the Kr data set (Sectidn_3.2). Similar plots for the ottiata sets may be
found online ahttp://scan.sai.msu.ru/kirx/var_idx_paper/

some objects measured with far worse accuracy than the itgajor
breaking the assumption (ii) above. The source extractioblpms
may be caused by blending and image artefacts. Neitheescait
correlation-based indices arfextive in distinguishing true vari-
able objects from the ones with corrupted photometry, whith
mately limits the usefulness of variability indices. Thenher of

where the parametg@ > 0 determines how much importance we
attach to completeness, relative of purity,P. For the test data sets
described in Sectidd 3, values®és high as 50 are needed to have
most of the known variables selected (with the majority dlidges)
above the cut limit that maximizesF.

For any variability index, the distributions of index vasur
variable and non-variable objects inherently interseates{i) there
is no lower limit on the possible amplitude of variability can
(i) there are often some objects with corrupted measurésmen
sulting in elevated variability index values for them. Tradue of
a should be chosen based on the false candidate rate that can be
practically handled at the post-processing stage. For pkaronly
a small number of false candidates are acceptable if seteloised
on variability indices is immediately followed by a visualspec-
tion. A larger number of false candidates can be acceptedrif v
ability index-based selection is followed by a period sbaftno
list of known variables is available for the new survey datae
may start by setting, for exampla, = 3 and gradually lowering
the cut-df level until the number of false detections becomes unac-
ceptable.

6 CONCLUSIONS

bad measurements in a photometric data set has a highertimpac

on the dficiency of variability search than the choice of a particu-
lar variability index. This is illustrated by comparisonafriability
search results in the data sets THFA2 (Sectiof_311) and Kr (Sec-
tion[3) obtained with similar equipment. The Kr data set irighih
bad measurements are aggressively removed provides sfstem
cally higherF; max scores than the TFIF2 data sets in which no
flagging of bad measurements is applied (Téble 5). The cas:-of
moving ‘suspicious’ measurements that may be corruptedtalue
blending is that one may lose some variable stars that aneléde
but have sfliciently high variability amplitude to be detected. The
efficiency of variable star search with variability indices itet-
mined by the ability to identify and discard bad measuremait
the source extraction stage or assign appropriately higir bars

to such measurements (and then use a variability index akatst
errorbars into account, see Table 1).

By computing the indices one may pre-select candidate vari-
ables from a photometric data set reducing the initial nunadbe
considered objects typically by an order of magnitude. Adeix
based selection of candidates should be followed by a more so
phisticated analysis such as period search and visual gtispe
of lightcurves and images to distinguish true variablesfitmadly
measured objects.

5.6 How to select a cut-ff value?

The cut-df value,a, for variable objects selection, which provides
a balance between the selection completeness and falsd/gosi
rate (maximizing theF;-score; Sectiofil4) varies greatly between
indices and data sets (FIg. 4). To seladbr a new variability sur-
vey one may use known variable stars covered by that survey. O
would often tolerate a large number of false-candidateswour
of a more complete variable objects selection, so a thrdswailby
maximizing theF;-score (while being useful for comparing vari-
ability indices with each other) may be considered too highrac-
tice. Instead, it is possible to search for the value afaximizing

Fs = (1+B°)(C x P)/(C +p°P), (25)

We compare 18 variability indices quantifying the overatser
andor degree of correlations between consecutive measurement
in a lightcurve. The ability of these indices to distinguistriable
stars from non-variable ones is tested on seven data sétstedl
with various ground-based telescopes and on simulatedrdaia
porating actual lightcurves of non-variable objects aséamod-
els of photometric noise. We apply the PCA in search for amuagt
combination of multiple variability indices.

We find that correlation-based indices are mdfeent in se-
lecting variable objects than the scatter-based indiceddta sets
containing hundreds of measurement epochs or more. Theemdi
1/n,L, MAD and IQR perform better than others in selecting candi-
date variables from data set$exted by outliers. We suggest using
the I/n index together with the IQR as the pair of indices appli-
cable to a wide variety of survey strategies and variabtpes.
The indices 15 and IQR provide stable high performance, albeit
not always the highest one for each of the investigated ddta s
However, the overall quality of a photometric data set idiig the
percentage of outlier measurements and number of badlyureshs
objects has a higher impact on th@aency of variability search
than the choice of a specific (set of) variability index(es).

Another dficient approach to variability detection is to com-
pute many scatter- and correlation-based variability desliand
perform the PCA over them. The admixture fiament of the first
principal component can be used as the composite index mibst s
able for the particular data set under investigation. Tédsriposite
index’ will perform on par with the best individual variaiyl in-
dices in this data set, but it requires no a priori knowledg&hich
indices are the best for the data set under investigation.

We also find that in practice, all the discussed variability i
dices as well as their combinations are ndfisient on their own
to automatically select variable stars from a large seigbitGurves.
The reason is that both variable and non-variable starsiesesd
groups: variables may have various lightcurve shapesewtah-
variable stars include both the majority of objects displgyjust
noise and objects with photometry corrupted by nearby thjec
cosmetic defects of a CCD, etc. The investigated indicesatan
distinguish the badly measured objects from real varidiéesiuse
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the corrupted measurements not only increase the ligrecoatter
(compared to a non-variable object of similar brightnelsg),may
also mimic correlated variability (due to night-to-nigletesng vari-
ations, drift of the object’s image across a cosmetic dedadtso
on). If all causes of measurement corruption in a particdddia set
can be identified and all such cases flagged at the sourcetitra
stage, the discussed variability indices maycéently distinguish
variable objects standing out among the majority of nonatde
stars.

At the same time, the variability indices are perfectly zbii¢
to solve the inverse problem: identify well-measured camisstars

Czech Republic. This research has made use of NASAs Astro-
physics Data System.
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