The Hubble Catalog of Variables (HCV)

Kirill Sokolovsky

National Observatory of Athens, Greece on behalf of the HCV team

A. Z. Bonanos, P. Gavras, M. Yang,

- D. Hatzidimitriou, M. I. Moretti,
- A. Karampelas, I. Bellas-Velidis,
- Z. T. Spetsieri, E. Pouliasis,
- I. Georgantopoulos,
- V. Charmandaris, K. Tsinganos (NOA) N. Laskaris, G. Kakaletris (Athena RC)

B. C. Whitmore, T. Budavari, R. A. Downes, S. H. Lubow, A. Rest, L. G. Strogler, R. L. White (STScI)

HST is good for deep imaging

- PSF FWHM ~0.1"
- Wide FoV (compared to ground-based AO)
- Low sky background

Individual stars in nearby galaxies!

Complications specific to HST

- High CR background
- Bad absolute astrometry (GSC)
- HST-specific software

exposure

HST archive

The Hubble Source Catalog (HSC)

Whitmore et al. (2016), Budavari & Lubow (2012)

- $\sim 10^7$ objects across $\sim 0.1\%$ of the sky
- Instruments: WFC3, ACS, WFPC2
- Photometry accurate at a few % level
- Absolute astrometry accurate to 0.1"

HSC sky coverage

- Pan–STARRS 42%
- SDSS 39%
- 2MASS 10%
- None 9%

The Hubble Catalog of Variables (HCV)

A few fields were visited by HST more than once

Some were specifically monitored in search of Cepheids, RR Lyrae, SNe

Objective: <u>define a set of algorithms that will detect</u> <u>and validate a candidate variable source within the</u> <u>HSC, producing the HCV</u>

- The HCV will include variable objects (Galactic & extragalactic) in the magnitude range not easily accessible to ground-based telescopes
- The HCV will be available in 2018

Variability detection problem

We don't really know measurement errors

- 1) Underestimated errorbars (flatfielding, CTE...)
- 2) Outlier measurements (CR, frame edge, bad images...)
- 3) All measurements of a particular source may be corrupted (blending, saturation, misplaced aperture)

Proposed solutions

1) Assume the majority of stars are not variable

2) Robust variability-detection statistic

 Bad image rejection + Local ZP correction + Quality flags characterizing object's profile and position stability + visual inspection

The 24 variability indices tested

Sokolovsky et al. (2017)

Index	Errors	Order	Time	Reference
Scatter-based indices				
weighted standard deviation – σ	\checkmark			Kolesnikova et al. (2008)
clipped $\sigma - \sigma_{clip}$				Kolesnikova et al. (2008)
median abs. deviation – MAD				Zhang et al. (2016)
interquartile range – IQR				Sokolovsky et al. (2017)
reduced χ^2 statistic – χ^2_{red}	\checkmark			de Diego (2010)
robust median statistic - RoMS	\checkmark			Rose & Hintz (2007)
norm. excess variance – $\sigma_{\rm NXS}^2$	\checkmark			Nandra et al. (1997)
norm. peak-to-peak amp. – v	\checkmark			Sokolovsky et al. (2009)
Correlation-based indices				
autocorrelation $-l_1$		\checkmark		Kim et al. (2011)
inv. von Neumann ratio – $1/\eta$		\checkmark		Shin, Sekora & Byun (2009)
Welch-Stetson index $-I_{WS}$	\checkmark	\checkmark	\checkmark	Welch & Stetson (1993)
flux-independent index $-I_{\rm fi}$	\checkmark	\checkmark	\checkmark	Ferreira Lopes et al. (2015)
Stetson's J index	\checkmark	\checkmark	\checkmark	Stetson (1996)
time-weighted Stetson's J_{time}	\checkmark	\checkmark	\checkmark	Fruth et al. (2012)
clipped Stetson's J_{clip}	\checkmark	\checkmark	\checkmark	Sokolovsky et al. (2017)
Stetson's L index	\checkmark	\checkmark	\checkmark	Stetson (1996)
time-weighted Stetson's L _{time}	\checkmark	\checkmark	\checkmark	Fruth et al. (2012)
clipped Stetson's L_{clip}	\checkmark	\checkmark	\checkmark	Sokolovsky et al. (2017)
S_B statistic	\checkmark	\checkmark		Figuera Jaimes et al. (2013)
excursions $-E_x$	\checkmark	\checkmark	\checkmark	Parks et al. (2014)
excess Abbe value – $\mathscr{E}_{\mathscr{A}}$		\checkmark	\checkmark	Mowlavi (2014)
Shape indices				
Stetson's K index	\checkmark			Stetson (1996)
kurtosis				Friedrich, Koenig & Wicenec (1997)
skewness				Friedrich, Koenig & Wicenec (1997)

Local ZP correction and outliers

Visual inspection interface

Current status

Test run: N>5, MAD>5 σ and χ^2_{red} >3 in two filters

Among ~700 000 sources that have multi-filter data: ~2000 automatically-selected multi-filter variability candidates, 70% of which pass visual inspection

Conclusions

- HCV catalog of variable objects derived from HSC
- to be released next year
- Very heterogeneous due to the nature of the dataset
- Very deep; venture into poorly explored region of variability parameter space
- HCV data pre-processing and variability detection techniques are applicable to other variability surveys

Related posters

- "Variability of massive stars in the Virgo Cluster galaxy NGC 4535 with the Hubble Space Telescope" Z. T. Spetsieri
- "Near-infrared Variable Candidates in the CANDELS/UDS, COSMOS and GOODS-South Fields from the Hubble Source Catalog" M. Yang
- *"Machine learning search for variable stars"* I. Pashchenko
- "Accurate photometry with digitized photographic plates of the Moscow collection"
 K. Sokolovsky

Indices are compared on F-score

 $C = \frac{\text{Number of selected variables}}{\text{Total number of confirmed variables}}$

Number of selected variables $P = \frac{1}{\text{Total number of selected candidates}}$

$$F = 2(C \times P)/(C+P)$$

See https://en.wikipedia.org/wiki/F1 score

The edge effect

Before cleaning

After cleaning

Bad group example Misaligned images and uncleaned CRs compromise photometry

